Nonparametric Bayesian Factor Analysis for Dynamic Count Matrices

نویسندگان

  • Ayan Acharya
  • Joydeep Ghosh
  • Mingyuan Zhou
چکیده

A gamma process dynamic Poisson factor analysis model is proposed to factorize a dynamic count matrix, whose columns are sequentially observed count vectors. The model builds a novel Markov chain that sends the latent gamma random variables at time (t − 1) as the shape parameters of those at time t, which are linked to observed or latent counts under the Poisson likelihood. The significant challenge of inferring the gamma shape parameters is fully addressed, using unique data augmentation and marginalization techniques for the negative binomial distribution. The same nonparametric Bayesian model also applies to the factorization of a dynamic binary matrix, via a BernoulliPoisson link that connects a binary observation to a latent count, with closed-form conditional posteriors for the latent counts and efficient computation for sparse observations. We apply the model to text and music analysis, with state-of-the-art results.

منابع مشابه

Structure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s

In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...

متن کامل

Dirichlet Process Parsimonious Mixtures for clustering

The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtur...

متن کامل

Parametric and nonparametric Bayesian model specification: A case study involving models for count data

In this paper we present the results of a simulation study to explore the ability of Bayesian parametric and nonparametric models to provide an adequate fit to count data, of the type that would routinely be analyzed parametrically either through fixed-effects or random-effects Poisson models. The context of the study is a randomized controlled trial with two groups (treatment and control). Our...

متن کامل

Simultaneous Modelling of Covariance Matrices: GLM, Bayesian and Nonparametric Perspectives

We provide a brief survey of the progress made in modelling covariance matrices from the perspective of generalized linear models (GLM) and the use of link functions (factorizations) that may lead to statistically meaningful and unconstrained reparameterization. We highlight the advantage of the Cholesky decomposition in dealing with the normal likelihood maximization and compare the findings w...

متن کامل

Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work

Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015